Acta Crystallographica Section D Biological Crystallography ISSN 0907-4449

Rey-Ting Guo,^{a,b} Tzu-Ping Ko,^c Chia-Cheng Chou,^{c,d} Hui-Lin Shr,^{c,d} Hsing-Mao Chu,^b Yao-Hsien Tsai,^e Po-Huang Liang^{a,b,c} and Andrew H.-J. Wang^{a,b,c,d}*

^aTaiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan, ^bInstitute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan, ^cInstitute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan, ^dCore Facility for Protein X-ray Crystallography, Academia Sinica, Taipei 115, Taiwan, and ^eInstitute of Biochemistry, National Yang Ming University, Taipei 112, Taiwan

Correspondence e-mail: ahjwang@gate.sinica.edu.tw

© 2003 International Union of Crystallography Printed in Denmark – all rights reserved

Preliminary X-ray diffraction analysis of octaprenyl pyrophosphate synthase crystals from *Thermotoga maritima* and *Escherichia* coli

Octaprenyl pyrophosphate synthase (OPPs) catalyzes the condensation of five isopentenyl pyrophosphates with farnesyl pyrophosphate to generate C_{40} octaprenyl pyrophosphate. The enzymes from the hyperthermophilic bacterium Thermotoga maritima and from the mesophilic Escherichia coli were expressed in E. coli and the recombinant proteins were purified and crystallized. The T. maritima OPPs crystals belong to space group $P42_12$, with unit-cell parameters a = b = 151.53, c = 69.72 Å. The *E. coli* OPPs crystals belong to space group C222₁, with unit-cell parameters a = 247.66, b = 266.10, c = 157.93 Å. Diffraction data were collected at 100 K using synchrotron radiation and an in-house X-ray source. Structure determination of T. maritima OPPs has been carried out using MIR data sets at 2.8 Å resolution. The asymmetric unit contains one dimer. An initial model with 280 residues per subunit has been built and refined to 2.28 Å resolution. It shows mostly helical structure and resembles that of avian farnesyl pyrophosphate synthase.

Received 21 July 2003 Accepted 28 August 2003

1. Introduction

Prenyltransferases catalyze the chain elongation of allylic pyrophosphate (usually farnesyl pyrophosphate; FPP) via sequential condensation reactions with isopentenyl pyrophosphate (IPP; Liang et al., 2002). The polyprenyl pyrophosphate products such as steroids, carotenoids, terpenoids, lipid carriers, natural rubber and the side chains of respiratory quinones serve a variety of important biological functions (Liang et al., 2002). During each condensation reaction of IPP, a new double bond is formed. Prenyltransferases have been classified as E- and Z-types, which catalyze the formation of trans and cis double bonds, respectively. Octaprenyl pyrophosphate synthase (OPPs) is an *E*-type prenyltransferase found in bacteria that catalyzes the condensation of five IPP molecules with FPP to generate C₄₀ octaprenyl pyrophosphate (OPP; Fujisaki et al., 1986; Asai et al., 1994), which constitutes the side chain of ubiquinone, which is involved in electron-transfer reactions (Okada et al., 1996). OPPs has been demonstrated to be essential for bacterial growth owing to its significant role in the bacterial life cycle (Okada et al., 1997; Apfel et al., 1999).

OPPs, along with most of the Z-type prenyltransferases, synthesize long-chain products. In the crystal structure of undecaprenyl pyrophosphate synthase (UPPs), an elongated crevice covered with hydrophobic amino acids was proposed as the substrate/ product binding site (Chang *et al.*, 2003; Ko *et al.*, 2001; Fujihashi *et al.*, 2001). We have previously demonstrated that Triton X-100 can increase the enzyme activity, accelerating release of the product (Pan *et al.*, 2000), and a polyprenyl carrier protein was also proposed to aid the product release (Ogura *et al.*, 1997).

Three-dimensional structural information about prenyltransferases is required for the understanding of the mechanism and function of these enzymes. Although the structure of FPPs, a short-chain *E*-type enzyme, has already been solved (Tarshis et al., 1994), no structure of a long-chain *E*-type prenyltransferase is yet available. Therefore, we expressed and crystallized two OPPs from the mesophilic Escherichia coli and, in order to increase chances of enzyme crystallizability, from the hyperthermophilic Thermatoga maritima (the enzymes share 28% sequence identity; Fig. 1). Subsequently, we have determined the crystal structure of T. maritima OPPs at 2.8 Å resolution by the multiple isomorphous replacement method (MIR).

2. Materials and methods

2.1. Protein preparation

2.1.1. *T. maritima* **OPPs**. The *T. maritima* **OPPs** gene that encodes 299 amino-acid residues was amplified from genomic DNA by the polymerase chain reaction (PCR) and inserted into the vector *pET-32Xa/LIC* (Novagen)

crystallization papers

under the control of the inducible T7 promotor. The recombinant plasmid was then transformed into host *E. coli* BL21 (DE-3) (Novagen) for expression. The procedure for protein purification followed a previously reported protocol (Kuo & Liang, 2002). The purified *T. maritima* OPPs was verified by mass-spectroscopic analysis and its purity (>95%) was checked by SDS–PAGE.

2.1.2. *E. coli* **OPPs**. The *E. coli* **OPPs** gene of 323 amino-acid residues was amplified by PCR and inserted into the same vector as for the *T. maritima* OPPs and the protein purified by a previously reported protocol (Pan *et al.*, 2002). However, this protein could not be crystallized after initial screening. To obtain more pure protein, we produced a new construct with the *E. coli* OPPs gene inserted into the vector pET16b. An extra 20 residues including a ten-His tag were added to the N-terminus of the *E. coli* OPPs

protein. The protein was purified from an Ni-NTA column, concentrated by Amicon (Millipore) and lyophilized and stocked after salt removal using a HiPrep 26/10 desalting column (Amersham Biosciences).

2.2. Crystallization and soaking with heavy atoms

Initial crystallization screening was performed using Hampton Research Crystal Screens (Laguna Niguel, CA, USA) with the hanging-drop vapour-diffusion method. In general, 2 µl of solution containing *T. maritima* OPPs or *E. coli* OPPs solution [25 m*M* Tris–HCl, 150 m*M* NaCl pH 7.5, 0.2%(v/v)Triton X-100] was mixed with 2 µl of reservoir solution and the mixture was maintained at 300 K. Crystallization was carried out with *T. maritima* OPPs or *E. coli* OPPs concentrations between 5 and 10 mg ml⁻¹.

Thermo E.coli	1 MTKNKLNQ.N SYELEKVKER I. EQILSQFF PEQIMKDLPL YGKML MNLEKINELT AQDMAGVNAA ILEQLNSDVQLINQLGY YIVSGGGKRI
Thermo E.coli	44 93 RVRLSILSFK NRGVEIGEDA ISSLAALELV HLASLLHDDV IDGARFRRGK RPMIAVLAAR AVGYE. GNAH VTIAALIEFI HTATLLHDDV VDESDMRRGK
Thermo E.coli	94 143 ETINFMYODK AAVAAGDLVL VSAFHTVEEI GNNKLRRAFL NVIGKMSEA ATANAAFGNA ASVLVGDFIY TRAFQMMTSL GSLKVLEVMS EAVNVIAEG
Thermo E.coli	144 189 LIEQLSRYKP . ITKEEYLRI VEGKSGALFG LALQLPALLE GELGED VLQLMNVNDP DITEENYMRV IYSKTARLFE AAAQCSGI A GCTPEEEKGL
Thermo E.coli	190 238 YNLGVTIGTI YQMFDDIMDF . AGMEKIGKD GFLDLKNGVA SFPLVTAMEK QDYGRYLGTA FQLIDDLLDY NADGEQLGKN VGDDLNEGKP TLPLLHAMHH
Thermo E.coli	239 273 . FPEAROMFE NRDWSGLMSFMR EKGILK ECEETLKV GTPEQAOMIR TAIEQGNGRH LLEPVLEAMN ACGSLEWTRQ RAFEEADKAI
Thermo E.coli	274 299 LVKNVIIENS WLRDFVDGIF KIKISS AALQVLPDTP W. REALIGLA HIAVQRDR

Figure 1

Sequence alignment of the OPPs from *T. maritima* and *E. coli*. The numbers are for the *T. maritima* (Thermo) sequence. Identical amino-acid residues are shaded grey.

Molecular replacement with the use of the FPPs as a model (PDB code 1fps) did not yield a correct solution. In order to prepare heavy-atom derivatives for MIR, the *T. maritima* OPPs crystals were soaked for 2 d in cryoprotectant solution consisting of 0.1 *M* Na HEPES pH 7.5 and 2.5 *M* Li₂SO₄ that contained either methylmercuric acetate (CH₃HgOOCCH₃), mercury (II) cyanide [Hg(CN)₂] or tetrakis(acetoxymercuri)methane [C(HgOOCH₃)₄] at 2 m*M* concentrations.

2.3. Data collection and analysis

Preliminary X-ray diffraction experiments were carried out using an R-AXIS IV⁺⁺ image-plate detector (Molecular Structure Corporation, The Woodlands, TX, USA) and Cu $K\alpha$ radiation generated by a Rigaku MicroMax007 rotating-anode generator. Higher resolution X-ray data were collected using synchrotron radiation and an ADSC Quantum 4 CCD camera at the BL12B2 Taiwan beamline at SPring-8, Japan. Data were processed using the *HKL* software package (Otwinowski & Minor, 1997).

Heavy atoms in the *T. maritima* OPPs crystals were located using the program *SOLVE* (Terwilliger & Berendzen, 1999), which was also used for calculation of the phase angles. The MIR map at 2.8 Å was subjected to maximum-likelihood density modification followed by autotracing using *RESOLVE* (Terwilliger, 2000). An initial model was built using *RESOLVE* and *XtalView* (McRee, 1999). The model was improved by manual rebuilding using *Xtal-View* and was refined using *CNS* (Brünger *et al.*, 1998).

3. Results and discussion

As shown in Fig. 2(*a*), large single *T. maritima* OPPs crystals were obtained in 0.1 *M* Na HEPES pH 7.5 and 1.5 *M* Li₂SO₄. Prior to data collection at 100 K, the crystals were mounted in a cryoloop and flash-frozen in liquid nitrogen with the addition of Li₂SO₄ to 2.5 *M* as a cryoprotectant. Crystals of *T. maritima* OPPs belong to the tetragonal space group *P*42₁2, with unit-cell parameters a = b = 151.53, c = 69.72 Å. Assuming two molecules per asymmetric unit, the Matthews coefficient $V_{\rm M}$ (Matthews, 1968) is 2.86 Å³ Da⁻¹, giving a solvent content of 55%.

Crystals of *E. coli* OPPs (Fig. 2*b*) were obtained in 0.1 *M* citric acid pH 5.0 and 0.8 *M* (NH₄)₂SO₄. For data collection, these crystals were mounted and flash-frozen with the addition of 30%(v/v) glycerol as a

cryoprotectant. The E. coli OPPs crystals belong to the *C*-centred orthorhombic space group $C222_1$, with unit-cell parameters a = 247.66, b = 266.10, c = 157.93 Å. Assuming ten, 12 or 14 molecules per asymmetric unit would give corresponding $V_{\rm M}$ values of 3.46, 2.88 or 2.47 Å³ Da⁻¹, respectively, and solvent contents of 63.1, 57.3 or 48.31%, respectively. Some datacollection statistics for the T. maritima and E. coli OPPs are listed in Table 1.

For MIR phasing, three data sets of heavy-atom derivatives of T. maritima OPPs crystals were used. Statistical values for data collection and phasing are listed in Table 2. The initial electron-density map clearly revealed that the asymmetric unit contains two molecules of OPPs in the form of a dimer and that the protein consists mostly of α -helices. After autotracing by *RESOLVE*, a model with 280 amino-acid residues including all side chains in each subunit was fitted into the electron densities (Fig. 3). The overall protein fold of T. maritima OPPs is similar to that of avian FPPs (Tarshis et al., 1994), despite their limited sequence identity (19%). The current R and R_{free} values are 0.25 and 0.32 for all 2.28 Å resolution data, respectively, and further refinement is in progress.

Figure 2

Crystals of octaprenyl pyrophosphate synthase (OPPs) from T. maritima (a) and E. coli (b) used in data collection; the approximate dimensions of the crystals are (a) $0.5 \times 0.5 \times 0.2$ mm and (b) 0.7×0.3 $\times 0.1$ mm.

Table 1

Data-collection statistics of the native OPPs crystals from T. maritima and E. coli.

Values in parentheses are for the highest resolution shell.

Data set	OPPs from T. maritima	OPPs from E. coli
Space group	P4212	C222 ₁
Unit-cell parameters (Å)	a = 151.53, b = 151.53, c = 69.72	a = 247.66, b = 266.10, c = 157.93
Resolution (Å)	50-2.28 (2.36-2.28)	50-3.9 (4.0-3.9)
No. of observations	360254 (35095)	391520 (33251)
Unique reflections	36239 (3529)	47783 (4724)
Completeness (%)	96.3 (95.8)	99.9 (99.9)
R_{merge} (%)	5.9 (42.3)	11.6 (44.6)
Average $I/\sigma(I)$	31.48 (4.36)	17.38 (3.90)

Table 2

Heavy-atom derivatives and MIR statistics of the T. maritima OPPs crystal.

Data set	CH ₃ HgOOCCH ₃	Hg(CN) ₂	C(HgOOCH ₃) ₄
Space group	P4212		
Unit-cell parameters (Å)	a = b = 151.29, c = 69.16	a = b = 150.76, c = 69.60	a = b = 151.07, c = 69.10
Resolution (Å)	50-2.7 (2.8-2.7)	50-2.8 (2.9-2.8)	50-2.8 (2.9-2.8)
No. of observations	153135 (13429)	144563 (11332)	145154 (10162)
Unique reflections	22584 (2205)	20151 (1936)	20174 (1880)
Completeness (%)	99.7 (99.6)	99.0 (97.2)	99.4 (95.0)
R_{merge} (%)	6.7 (44.3)	6.1 (24.3)	6.4 (36.3)
Average $I/\sigma(I)$	22.53 (4.25)	25.57 (5.55)	27.23 (4.39)
Phasing power†	0.76	0.53	0.58
Mean overall FOM	0.50 (50–2.8 Å)		
No. of sites	4	2	2

† Phasing power is the ratio of the r.m.s. of the heavy-atom scattering amplitude and the lack-of-closure error.

Figure 3

The α -carbon tracing of the model of the *T. maritima* OPPs dimer; different subunits are coloured pink and green and the model is shown in two orthogonal views. This figure was prepared using MolScript (Kraulis, 1991) and Raster3D (Merritt & Bacon, 1997).

Because of the large unit cell and the large number of protein molecules in the asymmetric unit and the lack of well defined non-crystallographic symmetry, structure determination of the E. coli OPPs crystals is not straightforward. We are working on heavy-atom derivatives and trying to solve the structure using the MIR approach.

Structure determination by molecular replacement is also in progress. In addition, we are preparing fresh E. coli OPPs protein and searching for new crystallization conditions to obtain new crystal forms in different space groups, hopefully with fewer molecules in the unit cell.

Data collection was conducted at the National Synchrotron Radiation Research Center (NSRRC), Taiwan, which is supported by the National Science Council (NSC) of ROC, Taiwan, using the Biological Crystallography Facility at NSRRC (BioSRRC). We thank Dr Mau-Tsu Tang for his kind help with data collection at SPring-8 and Dr I-Feng Hung for his efforts in the initial stage of the project. This research was supported by grants from the National Science Council (NSC 91-3112-P-001-019-Y) and Academia Sinica.

References

- Apfel, C. M., Takacs, B., Fountoulakis, M., Stieger, M. & Keck, W. (1999). J. Bacteriol. 181, 483– 492.
- Asai, K. I., Fujisaki, S., Nishimura, Y., Nishino, T., Okada, K., Nakagawa, T., Kawamukai, M. & Matsuda, H. (1994). *Biochem. Biophys. Res. Commun.* 202, 340–345.

- Brünger, A. T., Adams, P. D., Clore, G. M, DeLano, W. L., Gros, P., Grosse-Kunstleve, R. W., Jiang, J.-S., Kuszewski, J., Nilges, M., Pannu, N. S., Read, R. J., Rice, L. M., Simonson, T. & Warren, G. L. (1998). Acta Cryst. D54, 905– 921.
- Chang, S. Y., Ko, T. P., Liang, P. H. & Wang, A. H.-J. (2003). J. Biol. Chem. **278**, 29298– 29307.
- Fujihashi, M., Zhang, Y. W., Higuchi, Y., Li, X. Y., Koyama, T. & Miki, K. (2001). Proc. Natl Acad. Sci. USA, 98, 4337–4342.
- Fujisaki, S., Nishino, T. & Katsuki, H. (1986). J. Biochem. 99, 1327–1337.
- Ko, T. P., Chen, Y. K., Robinson, H., Tsai, P. C., Gao, Y. G., Chen, A. P. C., Wang, A. H.-J. & Liang, P. H. (2001). J. Biol. Chem. 276, 47474– 47482.
- Kraulis, P. J. (1991). J. Appl. Cryst. 24, 946– 950.
- Kuo, T. H. & Liang, P. H. (2002). Biochim. Biophys. Acta, 1599, 125–133.
- Liang, P. H., Ko, T. P. & Wang, A. H.-J. (2002). *Eur. J. Biochem.* **269**, 3339–3354.
- McRee, D. E. (1999). J. Struct. Biol. 125, 156 -165.

Matthews, B. W. (1968). J. Mol. Biol. 33, 491–497.

- Merritt, E. A. & Bacon, D. J. (1997). *Methods Enzymol.* **277**, 505–524.
- Ogura, K., Toyama, T. & Sagami, H. (1997). Subcell. Biochem. 28, 57–88.
- Okada, K., Minehira, M., Zhu, X., Suzuki, K., Nakagawa, T., Matsuda, H. & Kawamukai, M. (1997). J. Bacteriol. 179, 3058–3060.
- Okada, K., Suzuki, K., Kamiya, Y., Zhu, X., Fujisaki, S., Nishimura, Y., Nishino, T., Nakagawa, T., Kawamukai, M. & Matsuda, H. (1996). *Biochim. Biophys. Acta*, **1302**, 217–223.
- Otwinowski, Z. & Minor, W. (1997). Methods Enzymol. 276, 307–326.
- Pan, J. J., Chiou, S. T. & Liang, P. H. (2000). Biochemistry, 39, 10936–10942.
- Pan, J. J., Kuo, T. H., Chen, Y. K., Yang, L. W. & Liang, P. H. (2002). *Biochim. Biophys. Acta*, 1594, 64–73.
- Tarshis, L. C., Yan, M., Poulter, C. D. & Sacchettini, J. C. (1994). *Biochemistry*, 33, 10871–10877.
- Terwilliger, T. C. (2000). Acta Cryst. D56, 965–972.
 Terwilliger, T. C. & Berendzen, J. (1999). Acta Cryst. D55, 849–861.